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Abstract. Segmentation of volumetric images is considered a time and 
resource intensive bottleneck in scientific endeavors. Automatic methods 
are becoming more reliable, but many data sets still require manual in- 
tervention. Key difficulties include navigating the 3D image, determining 
where to place marks, and maintaining consistency between marks and 
segmentations. Clinical practice often requires segmenting many different 
instances of a specific structure. In this research we leverage the simi- 
larity of a repeated segmentation task to address these difficulties and 
reduce the cognitive load for segmenting on non-traditional planes. We 
propose the idea of guided contouring protocols that provide guidance in 
the form of an automatic navigation path to arbitrary cross sections, ex- 
ample marks from similar data sets, and text instructions. We present a 
user study that shows the usability of this system with non-expert users 
in terms of segmentation accuracy, consistency, and efficiency. 

	
	

1 Introduction 
	

Revealing useful knowledge from 3D/4D biological imaging usually starts with 
a segmentation of the structure(s) of interest. Segmentation  is  critical  in  a 
wide range of applications such as rendering visualizations, quantitative anal- 
ysis, treatment planning, and virtual simulations. Thus, effective segmentations 
need to be accurate, consistent, and created efficiently. When segmentation be- 
comes a bottleneck in the data-to-knowledge pipeline, it hinders research and 
could even result in health risks in clinical practice [4]. 

A variety of research in automatic segmentation techniques is ongoing. While 
these methods are becoming more reliable [16], many segmentations are still 
created manually to ensure the necessary quality and accuracy. Manual segmen- 
tation entails marking the boundary of the structure throughout the volume 
commonly done by drawing contours on multiple 2D slices. In standard prac- 
tice, the slicing planes are either parallel along, or orthogonal to, the scanning 
direction of the image data. Delineating enough contours to create an accurate 



	
	
	
	

segmentation can be both difficult and time intensive, depending on the shape 
of the structure and the size and quality of the image data. 

In many settings the same type of structure is repeatedly segmented (e.g. 
patient livers, mitochondria in cells, etc.). In this work we leverage the fact that 
the same general shape is segmented in each instance in order to define a protocol 
to guide segmentation of a specific class of structures. This can help to reduce 
navigation time as well as help users maintain consistency both in how and 
where they place marks from one instance to another. A protocol is useful in the 
traditional parallel or orthogonal contouring approach, but more importantly it 
supports using arbitrarily-oriented contouring planes that can be placed to follow 
the global structure of the shape — for instance, tracking a tubular structure 
as it curves in space. The primary finding of this paper is that we can support 
these structure-specific contouring planes (which reduces both time and error 
in the segmentation process) without unduly increasing the cognitive load over 
more traditional contouring methods. 

Specifically, we present the first stage of a new conceptual approach for work- 
ing with volume data – guided 3D segmentation through structure-aligned con- 
touring protocols – and design a novice friendly interface for evaluating this 
approach. 

	

Contributions of this paper include: 
	

1. A guided, structure-aligned approach to segmentation that reduces the cog- 
nitive burden of using non-traditional contouring planes. 

2. A real-time visualization of location in a 3D volume in parallel with drawn 
contours and segmentation surface. 

3. Verification that experts can utilize structure-aligned planes to create seg- 
mentations comparable to their traditional parallel segmentations. 

4. A user study to show that this guided approach allows novices to produce 
segmentations of comparable quality to experts. 

5. Identification of factors that influence segmentation time and quality, en- 
abling comparison of different contouring protocols. 

	
	

2 Related Work 
	

2.1 Manual 3D Image Segmentation 
	

Manually creating accurate segmentations in an efficient manner is a non-trivial 
task. Biological tissues are often not clearly separated, in addition to image noise 
and lack of sufficient resolution and contrast. Within volumetric imaging, this 
is further compounded by difficulties in maintaining orientation and structural 
awareness in the data. Therefore, in practice usually only domain experts with 
years of training in inspecting their specific imaging modality for their specific 
structures  perform  segmentation. 

Traditionally, experts mark boundaries on parallel slices throughout the vol- 
ume. Many systems also allow marking contours on orthogonal intersecting slices, 



	
	
	
	

as generally less marking is needed and they can better capture surface curva- 
ture extrema. Orthogonal contouring has spawned various interactive systems 
that take user contour input and reconstruct a surface using splines or implicit 
functions [1, 6]. The work in [5] makes use of the live-wire technique for draw- 
ing contours on orthogonal planes and for interpolating between the contours. 
These methods, however, are all dependent on the user’s ability to choose planes 
to contour on and do not provide guidance in this regard. Additionally, methods 
that rely on detecting boundaries may lead to undesirable results or require more 
input when the boundaries are unclear. 

	
	

2.2 Segmentation Guidance 
	

The main difficulty in any interactive segmentation system is navigating and 
choosing where to mark boundaries. Thus new research has explored using guid- 
ance in segmentation systems. The work in [9] uses the random walks algorithm 
in a seed-based semi-automatic segmentation system where users place marks 
inside the structure instead of drawing boundary contours. The random walk 
probability is used to direct users to areas where more seeds could be placed. 

Contour-based guidance approaches aim to automatically choose planes to 
mark contours on. In [13] the authors extend the work in [5] to arbitrary planes, 
and use the live-wire cost of the segmentation result to suggest planes that need 
marking. Similarly in [14] the authors have users provide drawn contours to seed 
the random walks algorithm, and in turn actively suggest new arbitrary planes 
with high uncertainty in the segmentation. Both of these methods require some 
initial contour(s) to find an initial segmentation to use as training data. There is 
little contouring consistency between similar data sets as the algorithms’ choices 
depend on the training input and uncertainty probabilities. 

These automatic plane selection methods are quite useful and our work fits 
nicely in tandem with them. We don’t require initial input since we instead define 
structure specific protocols that encode a preset automatic navigation path to 
contouring planes. This path encourages consistency, so our protocols could be 
used to provide consistent training data to these other methods. Additionally, 
experts could use these methods to aid in protocol creation. 

	
	

3 Methods 
	

3.1 Motivation 
	

Two major challenges posed by manual volume segmentation are the cognitive 
strain of free-form data navigation and knowing where to draw contours. It is 
for these reasons that many segmentation systems limit the selection of planes 
to only parallel or orthogonal placement. However, arbitrarily placed planes can 
offer more useful views of the data that are aligned to the structure’s shape and 
capture known features more efficiently [15]. Our approach leverages prior knowl- 
edge of the structure’s general shape in order to use arbitrary planes without 
increasing the segmenter’s cognitive load to complete the task. 



	
	
	
	

To address 3D free-form navigation we propose to remove the need for large- 
scale manual navigation. Navigation in 3D data is difficult for domain experts 
let alone novices unfamiliar with biological structures. Our approach provides 
a navigation path to a relative set of structure-aligned planes to draw contours 
on for a given structure. Here “relative” means the planes shift according to the 
initial position of the first plane placed in the volume. Plane locations incor- 
porate structure shape knowledge, and they describe a set path that increases 
predictability from data set to data set. In this work we side step the larger 
problem of choosing the best set of planes for a given structure and have an 
expert manually choose a reasonable structure-aligned sequence of planes. 

In [10] it was shown that references images can substantially improve con- 
tour drawing consistency for novice users for a single, arbitrary plane. Thus, to 
address difficulties knowing where to draw on a given plane, we provide visual 
cues in the form of images of example expert-drawn contours from similar data 
sets along with text instructions. Using reference visuals transforms a complex 
perceptual and cognitive task requiring domain expertise to, essentially, a pat- 
tern matching task that can be performed by novices. This allows us to use 
knowledge of the structure while still taking advantage of people’s abilities to 
adapt to the data. 

	
	

3.2 Contouring Protocol Definition 
	

The guided contouring protocol incorporates a preset navigation path of arbitrary 
planes within the volume, images of example contours from similar data sets for 
each plane in the navigation path, and text instructions. It is essentially step- 
by-step instructions for drawing a set of contours that result in a segmentation 
surface for a specific type of structure. 

The navigation path is defined as a set of successive 3D transformations 
between the chosen planes in a temporal order. For each step, the system auto- 
matically navigates to a plane by means of a smooth animated transition. Text 
instructions and a small set of expert-drawn example contours from a similar 
data set provide guidance for drawing the new contour. Additionally, users can 
make local plane navigation adjustments to better match the example images 
before drawing. A surface is constructed and progressively refined after the ad- 
dition of each contour to provide immediate visual feedback. We utilize [8] for 
surface reconstruction for its speed and reliability in producing a surface with 
partial or distorted input. 

	
	

3.3 Interfac
e 

	
Our contouring protocols could easily be implemented into any standard seg- 
mentation interface. For novice testing we built an interface, inspired by [10]’s 
design, that focused on 1) supporting clear  orientation  and  enhancing  struc- 
tural awareness, and 2) exposing all functionality through in-screen elements to 
minimize required clicks. Fig. 1 depicts the four areas of the interface. 
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Fig. 1. Interface layout. Area 1 is the main window, 2 is the 3D volume localization, 3 
is the protocol instructions, and 4 is the navigation path visualization. 

	
	

1) Main Window: The primary focus for interaction that shows the current slice, 
drawn contours, and if desired, the surface. Includes standard navigation and free 
hand drawing tools. 
2) Localization: The pair of linked views visualizes the current slice’s position in 
the volume (left) and the location of all drawn contours and the segmentation 
surface (right). They are presented as YAH (You-Are-Here) cubes, inspired by 
[7, 12]. Turntable controls rotate the cubes to find a useful view of the volume 
without losing global orientation. 
3) Instructions: Provides both the image-based and text-based information. Each 
of the example image icons can be clicked to view it in the main window. 
4) Navigation Path: The navigation path is visualized as a sequence of thumb- 
nails. The user navigates using the next and previous buttons or by clicking on a 
thumbnail in the enforced order. The thumbnail for a completed step shows their 
drawn contour; thumbnails for uncompleted steps are grayed out and filled with 
an example image. The navigation path provides a simple method for “scanning” 
through the volume and shows the progression through the protocol. 

	
	

4 User Study 
	

To demonstrate that our system is suitable we tested it with expert users from 
radiation oncology. To demonstrate that novices are able to complete a valid 
segmentation using the guided contouring protocol, we conducted a study with 
novice users and compared the results to expert segmentations. The four hy- 
potheses we tested are: 

	
H1 Given sufficient guidance in the form of example images and predetermined 

contouring planes, novices can reliably produce valid segmentations for rel- 
atively complex structures. 



	
	
	
	

H2 Using a set of structure-aligned planes increases segmentation accuracy and 
consistency compared to a set of parallel or orthogonal planes with the same 
amount of work. 

H3 Total contouring time is dependent on contour length and curvature and 
the number of contours. 

H4 Experts can produce comparable segmentations and in less time using non- 
parallel contouring to those using the traditional parallel approach. 

	
For H1, we compare novices both pairwise and to ground truth expert seg- 

mentations. For H2 we compare the accuracy, consistency, and completion time 
for three types of protocols used on a single dataset where each protocol requires 
approximately the same amount of drawing. For H3 we look at novice comple- 
tion time and contour drawing times in contrast to their length and curvature. 
For H4 we examine expert completion time and the inter-expert consistency 
of segmentations produced using parallel contouring and our guided approach. 
For mesh comparisons we use Dice’s coefficient (DC) [3] and the mean percent 
distance (MPD), which is the mean distance [2] normalized by the structure size. 

	
	

4.1 Study Design 
	

Participants: We recruited 20 volunteers from the Washington University in St. 
Louis community to segment three different data sets using structure-aligned 
protocols. Only 20% were moderately familiar with medical images and only 
10% claimed to be moderately or highly experienced with image segmentation. 
Additionally we recruited 8 volunteers from the Oregon State University com- 
munity to segment one of the data sets using parallel and orthogonal protocols. 
Only 1 user claimed to be highly experience with image segmentation. 
Image Data: We used CT scans of a liver, an aorta, and a ferret brain. The 
selected data sets enable us to evaluate our approach sufficiently to demon- 
strate validity. They range from simple (aorta) to complex (ferret) with differing 
image/contrast quality representative of data encountered in real segmentation 
tasks. Fig. 2 shows example images from each data set and an expert segmen- 
tation. The contours show the planes used in the structure-aligned protocols. 
Since the aorta is a tube we had users segment slightly more than the expert 
and then clipped the results. 
Training: Users received a verbal introduction and explored the interface using 
a data set not included in the study. The training averaged 15 to 20 minutes. 
Procedure: The first 20 users used structure-aligned protocols to segment the 
three data sets in a random order determined pseudo-randomly such that the 
six orderings were evenly represented. The number of protocol planes were eight 
for the liver, nine for the aorta, and ten for the ferret brain. The 8 additional 
users segmented only the liver using both a parallel and orthogonal protocol in 
a random order consisting of seven and eight planes respectively. The planes for 
the parallel and orthogonal protocols were chosen such that they required about 
the same total amount of drawing as the structure-aligned protocol. We only 
allowed free-hand drawing for comparison purposes. No user failed to complete 
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Fig. 2. Example images and segmentations from the three data sets: (a) liver (b) aorta 
(c) ferret brain. 

	
	

any tasks. A questionnaire was administered at the completion of the tasks to 
gauge user background and opinions on the task. 

	
	

4.2 Expert Evaluation 
	

We invited 7 experts to complete segmentations of only the liver using their 
traditional parallel contouring and using our structure-aligned guided contouring 
protocol. The training and comparison metrics were the same as the novice study. 
The procedure was similar, except they did parallel contouring first followed 
by the guided approach (using the same interface), and did not complete a 
questionnaire. Inter-expert consistency was higher for the guided approach versus 
the traditional one (DC: 0.92 ± 0.016 vs 0.87 ± 0.138, and MPD: 1.62 ± 0.45 
versus 1.86 ± 1.71), and overall completion time was faster (469 ± 186 seconds 
vs 804 ± 113 seconds) confirming H4. For more details see thesis [11]. 

	
	

4.3 Novice Results and Discussion 
	

Accuracy:  We evaluate the accuracy of novice segmentations by comparing to 
a ground truth expert segmentation for each structure (Fig. 3 Top). The liver 
ground truth was the average of the expert segmentations from Sec 4.2, while 
the aorta and ferret brain ground truths were provided to us with the data. 

Users were able to construct reasonably accurate segmentations for the three 
structure-aligned data sets. The ferret brain was least accurate due to its com- 
plexity. Much of the expert boundaries don’t fall on strong gradients, shown with 
the solid line in Fig. 4, and many users tended to follow the stronger boundaries, 
shown with the dotted lines. The variance in the aorta was because some planes 
had a second visible boundary that some chose to follow, as shown in Fig. 4. For 
reference, we show the liver results from Sec 4.2 as dashed lines in Fig. 3 and 
can see that the novice accuracy is close to the variance seen among expert liver 
segmentations. These results indicate that using our guided contouring protocol 
novice users are capable of producing segmentations of comparable quality to 
expert segmentations, confirming H1. 
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Fig. 3. Top: The average MPD and DC between novice segmentations and the ground 
truth. Bottom: The average MPD and DC between all pairwise novice segmentations. 
The dashed line indicates the results from 4.2. 

	
	
	
	
	
	
	
	
	
	

Ferret Brain Aorta 
	

Fig. 4. Examples of ambiguous boundaries. The solid outline is the expert segmenta- 
tion, and the dotted lines show boundaries that some novices followed instead. 

	
	

For the liver cases, the structure-aligned protocol produced a significantly (T- 
Tests MPD: p=0.00007 ≤ 0.05, DC: p=0.00016 ≤ 0.05) more accurate segmen- 
tation compared to the parallel protocol confirming H2. And while the structure- 
aligned results were slightly more accurate than the orthogonal, they were not 
significantly so (T-Tests MPD: p=0.1015 ≥ 0.05 ,DC: p=0.0836 ≥ 0.05). 

	
	

Consistency:  We evaluate the consistency of the novice segmentations by per- 
forming pairwise comparisons among all users for each protocol (Fig. 3 Bottom). 

Users were reasonably consistent for the three structure-aligned cases. The 
ferret brain and aorta had more variation for the same reasons discussed in the 
accuracy section. Looking at the dashed line, the novice liver segmentations were 
as consistent as the experts, which shows that novice users can reliably produce 
similar segmentations using our protocols, confirming H1. The protocol approach 



	
	
	
	

encourages consistency because it enforces a defined contouring scheme so that 
segmentations are performed in a relatively uniform manner. 

For the liver cases, the structure-aligned protocol produced significantly more 
consistent segmentations than both the parallel (T-Tests MPD: p=0.00001 ≤ 
0.05, DC: p=1.19144E − 8 ≤ 0.05) and orthogonal (T-Tests MPD: p=0.00024 ≤ 
0.05 ,DC: p=0.00005 ≤ 0.05) protocols, confirming H2. 

	
	

Efficiency: We evaluate the efficiency of our guided contouring protocol by 
computing the average completion time for each protocol. We also examine con- 
touring time in terms of contour length and curvature. 
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Fig. 5. Average completion time broken down by user actions. The number of protocol 
planes is shown above each bar. The dashed line on the indicates the results from 4.2. 

	
	

The average completion time for each protocol was between 10-15 minutes 
(Fig. 5) with the exception of the ferret brain due to its complexity. For the 
liver, novice users took less than double the expert time for the liver on aver- 
age. We feel that these results are compelling considering the users had little to 
no prior experience. Using our protocols the segmentation time is firstly dom- 
inated by time spent drawing contours and secondly by time spent idling (i.e. 
reading/observing), confirming H3; little time is used for manual navigation. 

For the liver cases, the completion time for the three protocols were very 
similar since they were designed to have approximately the same amount of 
drawing. The parallel case was slightly significantly faster than the structure- 
aligned (T-Test: p=0.04914 ≤ 0.05) but it was also less accurate, meaning that 
more parallel contours are needed which would increase the time. 

Because segmentation time is now mostly dependent on the time taken to 
draw contours, we consider two contour length and curvature, and their influence 
on drawing time. In Fig. 6 that the general trend shows that as the length or 
curvature increases so does the drawing time, confirming H3. The aorta contours 
all have similar length and curvature, so we see them clustered together in both 
plots. The liver contours have similar curvature but vary in length. The complex 
ferret brain contours varied fairly equally on both factors. 



	
	
	
	

 
	

Fig. 6. Scatter plots of contour length and curvature versus drawing time. The contour 
length was normalized to a unit square drawing window. The curvature for each contour 
was measured as the sum of the absolute curvature across all contour points. 

	
	

From these results we can represent the approximate time, T , needed to 
draw n contours as a function of the contours’ length and curvature, plus an 
uncertainty factor, as shown in Equation 1 below. 

	

n 

T = 
) 
αLi + βCi + Ui (1) 

i=1 
	

For each contour, i, Li is its length, Ci is its curvature, and Ui is an estimate 
of the time needed for its uncertainty. We normalize curve length by mapping 
the visible window to a unit square, and the curvature is the sum of the absolute 
curvature across the contour. We fit a linear polynomial surface to our novice 
3D data points of contour length vs. curvature vs. time (with outliers removed) 
to find α as 23.85 and β as 0.3135 for our examples. 

	
	

5 Conclusions 
	

Segmentation quality is defined by what the domain expert deems as useful. 
This notion drives the usefulness and flexibility of expert designed protocols that 
is more powerful than an arbitrary “gold standard”. Future work will develop 
tools for protocol creation with automatic plane selection to easily choose the 
best structure-aligned planes. To further improve accuracy we will make use of 
our structure protocol knowledge in conjunction with surface reconstruction. 
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